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The original charge ¯ipping algorithm [OszlaÂnyi & SuÈ to�� (2004). Acta Cryst.

A60, 34±141] is an amazingly simple structure solution method which works ab

initio on high-resolution X-ray diffraction data. In this paper, a new version of

the algorithm is presented that complements the phase exploration in reciprocal

space. Instead of prescribing observed moduli of all structure factors, weak

re¯ections are treated separately. For these re¯ections, calculated moduli are

accepted unchanged and calculated phases are shifted by a constant �' = �/2.

This means that the observed data of weak re¯ections are not used in the

iteration, except for the knowledge that they are indeed weak. The improvement

is drastic, in some cases the success rate is increased by a factor of ten, in other

cases a previously unsolvable structure becomes solvable by the modi®ed

algorithm.

1. Introduction

Recently, we presented an amazingly simple ab initio structure

solution algorithm, which was called charge ¯ipping (OszlaÂnyi

& SuÈ to��, 2004). The method is based on the fact that the unit

cell is mostly empty. The electron density of a crystal has

extended regions of zeros, which appear as small oscillations

given high-resolution X-ray diffraction data. Therefore, we

can limit the algorithm to ®nd only the high-density atomic

regions, and accept that the only function of low density is to

effectively explore the phase space. In this scheme, the low

density will bear no relationship to the true charge density.

This is not a high price to pay because, once a starting struc-

tural model is available, standard re®nement programs can

safely complete and re®ne the electron density. The charge

¯ipping algorithm works iteratively in the manner of Fourier

recycling. In real space, the modi®cation is the sign reversal of

electron density below a threshold while, in reciprocal space,

the observed structure-factor moduli are combined with the

calculated phases. The method is truly ab initio, the knowledge

of chemical composition or even atom types is not required.

Symmetry information is not used either, all structures are

allowed to ¯oat in space group P1.

In crystallography, all ingredients of the charge ¯ipping

algorithm have been present for quite some time. Solvent

¯ipping was used as a density-modi®cation method in protein

crystallography (Abrahams & Leslie, 1996; Abrahams, 1997),

an electron-density threshold was applied by the low-density

elimination algorithm (Shiono & Woolfson, 1992), and the

space group P1 was utilized to relieve symmetry constraints

(PavelcÏõÂk, 1994; Sheldrick & Gould, 1995; Burla et al., 2000). It

is their mix that makes the algorithm work. However, we did

not arrive at the algorithm along this path. The charge ¯ipping

algorithm has its roots in phase retrieval of non-periodic

objects (Gerchberg & Saxton, 1972; Fienup, 1982; Millane,

1990), we found it as a modi®cation of Fienup's hybrid input±

output algorithm (Fienup, 1982). This was a natural direction,

since non-periodic objects with a surrounding support always

supply an abundance of zeros. We ®rst handled the object and

its support in the same way, then succeeded with less-and-less

oversampling and ®nally reached the Bragg sampling of

crystals. Diffraction data of crystals are always undersampled

(Sayre, 1952), there are fewer zeros, no known support, a

situation that means a greater challenge to the algorithm. We

continue to work on the crystallographic phase problem, and

anticipate that some developments here will ®nd application

in the reconstruction of non-periodic objects.

The charge ¯ipping algorithm is still in its infancy. However,

two research groups have already shown that it works for

experimental data (Wu et al., 2004; Palatinus, 2004), most

surprisingly in the case of modulated crystals (Palatinus, 2004).

This is an important result that proves that the algorithm is not

based on atomicity. The abundance of low-density values helps

to develop it, but the two notions are not identical. Without

the use of atomicity, the new method offers special applica-

tions, but in normal cases it has lower ef®ciency than more

elaborate dual space direct methods (Miller et al., 1993;

Sheldrick, 1998).

In the present paper, we focus on improving the charge

¯ipping algorithm. In the original version, low-density regions

of real space were modi®ed to explore the structure-factor

phases. Respecting the original philosophy, this exploration

can also be done in reciprocal space. We can check what

contribution is added to the electron density by e.g. the



weakest 20% of structure factors. Not surprisingly, this

contribution is small. Therefore, a different and complemen-

tary exploration of the phase space can be done by the real

and reciprocal half cycles of the iteration process. In the

following, we show that the charge ¯ipping algorithm is more

ef®cient if weak structure factors are treated separately, their

calculated moduli are allowed to change freely and their

phases are shifted by a constant �' � �=2. The improvement

is drastic, in some cases the success rate is increased by a factor

of ten, in other cases, a previously unsolvable structure

becomes solvable by the modi®ed charge ¯ipping algorithm.

2. Easy- and hard-to-solve structures

A large pool of dissimilar structures is a precondition for

algorithm development. Since our ®rst paper (OszlaÂnyi &

SuÈ to��, 2004), we have solved more than a thousand crystal

structures using high-resolution synthetic data, and learned

that the number of atoms is not the only parameter that

determines the dif®culty of ab initio structure solution. There

are remarkably large structures that are easy to solve, and

some relatively small ones that require a lot of effort. We need

a few dif®cult examples, matching the current status of the

algorithm. Too easy or impossible to solve structures are

useless for algorithm development. We praise simulation, this

allowed us a fair comparison of algorithm variants by

providing the same quality diffraction data for different

structures. Throughout this work, we used scattering factors of

real atoms at zero temperature and calculated single-wave-

length data extending to a resolution of 0.8 AÊ . In all cases, the

tolerance to noise and missing data was extensively checked.

Here we summarize our general experience on how the charge

¯ipping algorithm performs with structures of different types.

The most important distinction is between centrosymmetric

and non-centrosymmetric structures. Diffraction data of real

scatterers have inversion symmetry, and the structure cannot

be distinguished from its enantiomer. Therefore, it is very

much easier to solve centrosymmetric than non-centrosym-

metric structures. The good news for the practical application

of the charge ¯ipping algorithm is that 75% of the CSD

database (Allen, 2002) is centrosymmetric, so these space

groups will not cause dif®culty. The bad news is that structures

of biological importance are almost entirely non-centrosym-

metric. For now we choose non-centrosymmetric examples

with space group P1 and try to reach the limits here. Note that

the method works for all other space groups, but these must be

treated as P1.

Another simple distinction is between all-light- and heavy-

atom structures. Normally, heavy-atom structures are easier to

solve. However, atoms that are too heavy may cause problems,

they can mask light atoms or prevent structure solution in

extreme cases. As charge ¯ipping is also ef®cient as a structure

completion method, it is always an option to start the iteration

process with a single heavy atom in real space. In P1, the

coordinates of this atom are not needed. All-light-atom

structures are more dif®cult to solve, especially with more than

100 atoms in the unit cell. So here we select large light-atom

structures for further algorithm development.

The third type of classi®cation is according to some struc-

tural motif. For simplicity, we call this random versus regular

structures. Traditional direct methods are based on structure-

factor statistics. They work well if the atomic positions can be

considered random but break down when a strong structural

motif, e.g. parallel sheets of planar molecules, occurs. The

charge ¯ipping algorithm behaves just the opposite way, it

clearly prefers structural motifs: lines, sheets, anything that can

be translated into a similar object. In this work, easy-to-solve

examples always correspond to regular structures, while

random-looking structures are often hard to solve. We believe

that randomness is less of a problem than some `bad'

symmetries, whether crystallographic or non-crystallographic,

which create traps for the algorithm.

A ®nal observation is that structures with a larger volume

per atom are easier to solve. Large intermolecular voids are an

advantage, they act as a natural support for the structure even

if their position is not known in advance. Fragmented struc-

tures with many small molecules are examples of this beha-

viour. We also made tests by arti®cially expanding structures.

These clearly show that either larger zero regions between

unchanged fragments or larger interatomic distances make the

charge ¯ipping algorithm more ef®cient, a situation similar to

oversampling.

We have brie¯y summarized a lot of qualitative experience

that helped to select the example structures for the present

study. By now, if we see a structure we can guess how dif®cult

its solution will be. It would be useful if the same guess could

be done based on observed data alone. We suggest that for a

class of equal-size structures a plot of structure-factor moduli

Fobs sorted in ascending order can serve this purpose. Fig. 1

shows such a plot for a selection of light-atom structures in the

space group P1. These curves approximately characterize the

effective dimensionality of the search space. By this notion, we

mean the number of large structure factors determining the
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Figure 1
Observed data for a selection of P1 structures with 125±150 light atoms in
the unit cell. Fobs is normalized by its maximum value and sorted in
ascending order. Curves from bottom to top characterize a transition
from easy- to hard-to-solve structures.



main characteristics of the structure. The smaller this number,

the easier the problem of structure solution.

3. Use of weak reflections

For algorithm development, we selected a synthetic peptide

with 132 non-H atoms in the unit cell (Karle et al., 1987). This

P1 test structure carries most properties that cause dif®culty

for the charge ¯ipping algorithm: it is relatively large, consists

only of light atoms, it is non-centrosymmetric and has a

continuous spiral backbone. It also corresponds to the `worst'

curve in Fig. 1. Although the original charge ¯ipping algorithm

can solve this structure, the success rate is low: 10% or less. For

our tests, we always checked 200 random starting phase sets

running the algorithm for a maximum of 20000 iteration

cycles. We know that success rates may depend on the exact

protocol used for structure solution, so we considered the

recent suggestion that their use should be abandoned (Elser,

2003). This is a thought-provoking opinion but would require

an algorithm that works for any structure and any phase set ±

unfortunately not the case in practice.

Here we repeat the steps of the original iteration process:

0. A random starting phase set '�h� is generated that

satis®es Friedel's law. The structure factors F�h� are created as

Fobs exp�i'�, where Fobs�h� are the observed moduli. The

starting electron density ��r� is obtained by an inverse fast

Fourier transform (FFT).

1. Given a positive threshold �, the electron density ��r� is

divided in two parts, � � �1 � �2 with �1�r� � ��r� if ��r�>�
and �2�r� � ��r� if ��r� � �. The electron density g�r� is

generated as g � �1 ÿ �2 by ¯ipping the low-density region.

2. Temporary structure factors G�h� are calculated by a FFT.

3. Structure factors F�h� are constructed by using the phases

of G�h� and replacing the moduli by Fobs�h�. F�0� � G�0� is

accepted unchanged and F�h� outside the resolution sphere

are reset to zero.

4. Finally, the F�h� amplitudes are inverted to obtain the

new electron density ��r�. The next iteration cycle is started

from step 1.

The iteration process is unconditional. Several basic quantities

like the R factor, total charge and phase change can be used

for monitoring convergence, which is indicated by an abrupt

drop in all of them, as shown by Fig. 2 of the paper by OszlaÂnyi

& SuÈ to�� (2004).

The only change of the above iteration scheme involves

step 3. Before using the algorithm, re¯ections are sorted

according to their observed moduli. Structure factors are

marked as weak and strong and will be treated separately in

the iteration process. Strong re¯ections are used as before,

accepting their calculated phases and replacing their moduli

by the observed data. Weak re¯ections are treated in a new

way, their calculated phases are shifted by �' and their

calculated moduli are accepted unchanged. This means that the

observed data of weak re¯ections are not used in the iteration,

except for the knowledge that they are indeed weak.

Obviously, this was not our ®rst thought for a new iteration

process. We checked many algorithm variants, some are listed

in the order of increasing ef®ciency: (i) all observed re¯ections

are used, (ii) weak re¯ections are set to zero, (iii) observed

moduli of weak re¯ections are used and their phases are

shifted, and (iv) the calculated moduli of weak re¯ections are

accepted and their phases are shifted. The last algorithm

variant turned out to be clearly the best. The hint to treat weak

re¯ections separately appeared in our previous paper but in

the context of tolerance to missing re¯ections.

In addition to the electron-density threshold �, there are

two new parameters of the modi®ed algorithm: the number of

weak re¯ections and the shift of calculated phases. In an

exhaustive study, all three parameters of the algorithm should

be simultaneously optimized. Our experience shows that up to

50% of all observed re¯ections can be treated as weak. For

now, we ®x this ratio at 20%, which works well in most cases.

The choice of �' and the original � parameter is more critical.

Fortunately, the two parameters are not strongly correlated, a

few one-dimensional slices of the parameter space are suf®-

cient.

Fig. 2 shows the success rate as a function of �', while the �
parameter is kept constant at its optimum value. This is an

astonishing plot. It shows that even 20% weak re¯ections play

a crucial role; their use can make or break structure solution.

At �' � 0, the success rate is zero. At this point, weak

re¯ections change freely, which seems to be the worst thing we

can do. Note that this differs from the original algorithm.

Then, in the 0<�'<�=2 range, the success rate increases

and reaches its maximum slightly above �=2. At larger phase

shifts up to �' � �, the success rate decreases signi®cantly

but does not reach zero again. The plot is then mirror

symmetric, positive and negative phase shifts have the same

effect. From now on, the modi®ed algorithm is de®ned as the

original charge ¯ipping algorithm completed by a constant �=2

phase shift of weak re¯ections.

Fig. 3 shows a comparison of the original and modi®ed

algorithms as a function of �. The modi®ed algorithm is better

in two obvious ways: (i) the maximum success rate is higher by

a factor of ten, (ii) the practical range of the � parameter is

also wider. The two properties are independent because the
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Figure 2
Success rate of the modi®ed charge ¯ipping algorithm as a function of the
�' angle. The test structure and the structure-solution protocol are
described in the text.



success rates do not scale. A wider � range is also true for easy

structures, where both algorithm variants work for all starting

phase sets. For dif®cult structures, success rates differ so much

that there is no point in comparing the average number of

iteration cycles per solution. For easy structures, the speed is

increased by a factor of up to ®ve. We only add that the

modi®ed algorithm is superior in one more way: for dif®cult

structures, it is worth continuing a given run for longer. This is

in contrast with the original algorithm, which either works

relatively fast or seems to get stuck due to the insuf®cient

perturbation of phases.

To prove further the ef®ciency of the modi®ed algorithm,

we also present examples that the original charge ¯ipping

algorithm could not solve. Table 1 shows a selection of large

all-light-atom structures in the space group P1 and a

comparison of success rates for the original and modi®ed

algorithms. It contains the two extremes: easy- and hard-to-

solve structures. For easy-to-solve structures, the success rate

is 100% for both algorithm variants, and the average number

of iterations leading to convergence is only a few hundred.

Although the size of hard-to-solve structures is similar, they

show a completely different behaviour. For these structures,

the maximum number of allowed iteration cycles was

increased to 100000 and the parameter � was optimized. Even

so, the original algorithm fails completely, while the modi®ed

algorithm still works with a fairly high success rate. Although

P1 is a rather special space group (Xu et al., 2000), we

emphasize that improved ef®ciency of the modi®ed algorithm

also holds for other space groups.

Finally, we mention that a single point in Fig. 2 and Fig. 3

corresponds to 200 structure-solution attempts, and in the

worst case 4 million iterations. These calculations were greatly

facilitated by the use of the FFTW software (Frigo & Johnson,

1998), the raw speed up of Fourier transforms was nearly an

order of magnitude. For instance, the average time per solu-

tion was 37 s for the 132 atom synthetic peptide and 605 s for

agazud, a dif®cult example in Table 1. A single parameter set

took 0.5±45 h, most time was spent for the cases when the

success rate was zero for the original algorithm. The above run

times were measured on a PC with a single processor Athlon

3200+.

4. Why does it work?

Any iteration method of ab initio structure solution relies on

two conditions. The ®rst is the stability of a solution once

found. Mathematically, this means that solutions are stable

®xed points of the iteration. The second is the absence of

metastable solutions. In other words, the algorithm either

avoids or escapes traps during the iteration process.

The original charge ¯ipping algorithm certainly has the ®rst

property. After convergence, the resulting density proves to be

quite robust against deterministic or random perturbations.

This holds for the electron density above the threshold, low

density may and will change. The stability is remarkable in

spite of the fact that the algorithm has a continuous set of ®xed

points (the structure and its translates) and is chaotic in the

sense of a hypersensitive dependence on the initial conditions.

Indeed, we checked that it suf®ces to change just the last bit of

a single initial phase to provoke an unpredictable shift of the

resolved structure. The duality of sensitive dependence on

initial conditions and stability after convergence is the main

characteristic of ab initio structure solution, which is utilized

by all multisolution strategies.

The second condition ± absence of metastable solutions ± is

more critical. We have seen that the original algorithm can get

stuck in hard to solve cases. The charge ¯ipping algorithm is

based on a real-space division of electron density in two parts,

and does not act in points where the value is above the

threshold. If at the beginning of the procedure high positive

densities emerge incoherently, it can be very dif®cult or

practically impossible to remove them by ¯ipping only small

densities and keeping the reciprocal-space part of the algor-

ithm unchanged. One can imagine many ways to remedy this

situation and it is possible that a suitable modi®cation of the

algorithm purely in real space would do equally well. Our

choice was guided by three principles: (i) reciprocal-space

perturbations may be ef®cient because they act non-locally in

real space, in particular also in points of high densities; (ii)

large observed data should be kept intact; (iii) the algorithm

should preferably remain deterministic.
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Table 1
Test structures.

Columns: CSD/PDB code and original reference, number of non-H atoms,
success rate of the original and modi®ed algorithms (%)

Code and reference No. of atoms Original Modi®ed

gofmod (a) 188 100 100
xeqtui (b) 264 100 100
hegxum (c) 209 0 75
agazud (d) 219 0 51
1a7y (e) 314 0 24

(a) Biradha et al. (1998); (b) Witt et al. (2000); (c) Rontoyianni et al. (1994); (d) Alexander
et al. (2002); (e) Schaefer et al. (1998)

Figure 3
Success rate of the original and modi®ed charge ¯ipping algorithms
(empty and solid symbols). The threshold � is normalized by the
maximum of the charge density. The test structure and the structure-
solution protocol are described in the text.



Based on the above principles and in analogy with the real-

space transformation, it was natural to make a similar division

in reciprocal space, determined by the magnitude of the

observed Fourier moduli. The particular way we have ®nally

chosen to perturb weak re¯ections is the result of a series of

trials. In retrospect, one can understand why a uniform �=2

phase shift of weak re¯ections gives the best result. Let H1 and

H2 be the sets of h vectors corresponding to strong and weak

re¯ections, respectively. If G�h� are the temporary structure

factors obtained in step 2 of the original iteration cycle, then,

according to the modi®ed algorithm, F�h� � G�h� exp�i�'�
if h is a weak re¯ection and F�h� � Fobs�h�G�h�=jG�h�j �
Fobs�h� exp�i'�h�� otherwise. This yields the new charge density

��r� � 1

V

�
F�0� � 2

X
h2H1

Fobs�h� cos�2�hr� '�h��

� 2
X
h2H2

jF�h�j cos�2�hr� '�h� ��'�
�
:

When �' � �=2, each partial wave of a weak re¯ection is

replaced by an orthogonal one. This is the largest perturbation

we can make. As the density below the threshold is alternating

in sign, the algorithm converges to a limit two-cycle and only

the phases of every second iteration cycle are comparable.

After two cycles, the phase shift of weak re¯ections adds up to

�, which is the largest value modulo 2�. This argument is valid

as long as high densities are only weakly perturbed. Using

large � and many weak re¯ections, the optimal choice of �' is

somewhat larger than �=2.

It is important to let the moduli of weak re¯ections change

freely. But, in addition, non-zero phase shifts of weak re¯ec-

tions are necessary to stabilize the freely changing moduli.

After convergence, low density in real space and small struc-

ture factors in reciprocal space will not contain structural

information. Their role is to explore the phase space and

broaden the region that can be hit to obtain the approximately

correct structure. This is better achieved by using fewer

constraints. If structure-factor moduli of weak re¯ections are

constrained by the observed values, the success rate goes down

by a factor of three, though its �' dependence remains

unchanged.

The modi®ed charge ¯ipping algorithm is still deterministic.

Apart from aesthetic reasons, we had other arguments against

a partial randomization of the algorithm. During the work on

our ®rst paper (OszlaÂnyi & SuÈ to�� , 2004), we learned that

randomization of low electron densities is a disastrous

perturbation that prevents convergence. Nevertheless, we

have tested many variants of random perturbation in re-

ciprocal space. In contrast to what happens in real space,

practically any random change of weak re¯ections improves

the convergence of the original algorithm. This shows that, as

long as large observed data are left unchanged, a non-local

perturbation of the electron density is a useful exploration of

phase space. However, none of the random algorithm variants

comes near to the ef®ciency of the modi®ed algorithm, which

is absolutely the best and deserves to be treated separately.

5. Conclusions

In this paper, we presented an ef®cient modi®cation of the

charge ¯ipping algorithm used for ab initio structure solution

of high-resolution X-ray diffraction data. In the original

version, low-density regions of real space were used to explore

the structure-factor phases (OszlaÂnyi & SuÈ to��, 2004). A

complementary exploration of the phase space can also be

done in the reciprocal half of the iteration cycles. For this,

weak and strong re¯ections are treated separately: while

strong re¯ections are used as before, weak re¯ections are

treated in a new way. Their calculated moduli are allowed to

change freely, and their phases are shifted by a constant

�' � �=2. The �=2 shift can be understood as the maximum

perturbation of re¯ections that add only a small contribution

to high electron densities. Paradoxically, it is better not to use

observed moduli of weak re¯ections: in the search for a

solution, they create only unwanted constraints.

This method of structure solution is only approximate, both

the low density in real space and small structure factors in

reciprocal space bear no relation to the true structure. Their

role is to develop high electron densities, which can be

considered as a (very complete) starting structural model. Our

view of the charge ¯ipping algorithm is that of a dynamical

system. In the very high dimensional space of phases, a

deterministic rule drives the system around. Once an

approximate solution is hit, it is stable against perturbations

including those that have driven the system so far. This

suggests that given favourable conditions (high resolution and

small size) the crystallographic phase problem is benign, at

least in comparison with the most general global minimum

problem of optimization.

The modi®ed algorithm is still based on the existence of

extended regions of zeros. A future improvement may be

achieved by some sort of sharpening, though higher-resolution

and lower-temperature experimental data are always prefer-

able. The reason is that all three trivial symmetries of

diffraction by real objects ± enantiomer, shift and negative

electron density ± can cause traps for an algorithm. While

centrosymmetric structures are free from the enantiomer

problem, too much sharpening opens an ambiguity for nega-

tive density. Most non-centrosymmetric symmetries suffer

from special ambiguities, at least when structures are handled

in the space group P1. Further work with symmetries is

required to see how this problem can be solved.

The modi®ed algorithm performs so much better than

the original version that it can be considered as the new

charge ¯ipping algorithm. Whether it will make a practical

piece of software remains to be seen. Charge ¯ipping

certainly started as a toy but recently it has been

successfully applied to experimental data of both normal

(Wu et al., 2004) and modulated crystals (Palatinus, 2004).

Structure solution of modulated crystals, quasicrystals and

non-periodic objects are promising new directions; in all cases,

the algorithm can work without the requirement of atomicity.

It is also likely that either the real- or reciprocal-space halves

of the algorithm will be utilized by other dual-space algor-
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ithms; we see no reason why they should work only in this

combination.

Note added. Since submission of the manuscript, we have

found that unobserved re¯ections outside the resolution

sphere (which were previously reset to zero) can be treated in

the same way as observed weak re¯ections described in x3.

Both algorithm versions perform similarly well. However,

concurrent special treatment of weak and unobserved re¯ec-

tions is too much, they impair each other's effect.

We thank LukaÂsÏ Palatinus for useful discussions. This

research was supported by OTKA grants T043494 and

T042914 and the work of GO was also funded by a Bolyai

JaÂnos Scholarship.
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